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UNIQUE ERGODICITY 
OF THE HOROCYCLE FLOW: 

VARIABLE NEGATIVE CURVATURE CASE 

BY 

BRIAN MARCUS 

ABSTRACT 

H. Furstenberg showed that horocycle flows on compact manifolds of 

constant negative curvature are uniquely ergodic. This paper generalizes his 
result to the case of variable negative curvature, in the more general context of 
flows whose orbits are the unstable manifolds of certain Anosov flows. 

O. Introduction 

Horocycles were introduced to dynamical systems in the study of the 

dynamics of geodesic flows. For a compact connected orientable 2-manifold N 

of negative curvature, a horocyle is an unstable manifold of the geodesic flow 

(i.e., the set of all points, in the unit tangent bundle (T,N) of N, which are 

backwards asymptotic with a given point under the action of the geodesic flow). 

Classically, horocycles were defined geometrically as certain curves in the 

universal covering manifold /Q of N ([6]). Our horocycles are related to the 

classical horocycles as follows: take one of our horocycles, project it into N, 

and then lift that to a curve in/Q; the result being a classical horocycle. (See [1, 

p. 30], [2].) 

A continuous l-parameter flow (on T,N) whose orbits are the horocycles is 

called a horocycle flow. We will use the geodesic flow to study the dynamics of 

horocycle flows. In particular, we show ((3.6)) that horocycle flows are 

uniquely ergodic (i.e., they have a unique invariant Borel probability measure), 

provided the geodesic flow is of class C 2 (the C 2 assumption is apparently 

unnecessary; see (1.8)). This was proved in the case of constant negative 

curvature by Harry Furstenberg ([5]). His paper provided the motivation for 

this work, although our method is different. 
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What we actually prove ((3.5)), which was suggested by Charles Pugh, is 

more general than (3.6), namely: continuous flows (called W u flows), whose 

orbits are the unstable manifolds of suitable (see (1.7) and (1.8)) Anosov flows, 

are uniquely ergodic. (The geodesic flow of manifolds of negative curvature is 

the classical example of an Anosov flow.) The crucial (but mild) assumption is 

that the W u flow be minimal. The same thing works just as well for flows whose 

orbits are stable manifolds. With our parametrization (2.1) of the W ~ flow the 

unique invariant measure is the one which maximizes entropy for the Anosov 

flow; this measure is constructed in [12]. 

We solved the analogous problem for Anosov diffeomorphisms in the more 

general context of Axiom A attractors ([11]). The results of this paper will be 

extended to the Axiom A context in a joint paper with Rufus Bowen ([4]), using 

another method. 

Thanks are due to Rufus Bowen, Moe Hirsch and Charles Pugh for their 

enthusiasm and many helpful insights, and to Francois Ledrappier and Jean- 

Paul Thouvenot  for suggesting an argument of M. Keane (see Section 3). We 

are also indebted to Harry Furstenberg, who suggested a simplification of our 

argument. 

1. Anosov background 

Let M be a compact connected Riemannian manifold and {f,} an Anosov 

flow. This means that {/,} is a (C'-)  differentiable flow without fixed points and 

there is a (Df,)-invariant continuous splitting of the tangent bundle T M  = 

E" @E sOE,  where E is the line bundle tangent to the flow direction and E"  

and E ~ satisfy: 

(1.0) there exist c o n s t a n t s a > 0 , 0 < / z < l  such that for t = > 0 : i f  v E E r ,  

then IIDL,(w)II--< a~'llvll, and if v E E ~, then IlDf,(v)][--< atz'llvll. Let 1 = d imE" ,  
k = dim E ' .  

We will need some facts from stable manifold theory. Let  d be the induced 

Riemannian metric on M. The unstable manifold 

( W " ( x ) )  = {y E M: lim d(f_,x, f_,y) = 0}. 

The stable manifold 

( W ' ( x ) )  = {y E M: lira® d(f ,x , f ,y)  = 0}. 

The weak stable manifold 
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(ww'(x))= U w'(/,x). 
tER 

By a continuous family of submani[olds, we mean a partition of M into 

injectively immersed q-dimensional submanifolds {W(x)} such that for each 

x EM,  there is a neighborhood U of x and a continuous map g: U--> 

C'(Dq, M) such that g(y) embeds D q in W(y) and g(y) (0)=  y for y E U. 

LEMMA (1.1) ([1], [13]). {W"(x)}, {WW'(x)} form continuous families of im- 

mersed submanifolds, whose tangent fields are E ' , E ' ~ ) E .  Actually, each 

W" (x) is an immersed copy of R ~. 

Let J , : R  I ~ W"(x) be the immersion. This gives W"(x)  a topology (the 

intrinsic topology). Now, we define the local manifolds. The local unstable 

manifold 

(B~(x))= {y @ W"(x): d~(x, y) <- e} 

and the local weak stable manifold 

(BT"(x)) = {y E WW'(x): d~'(x,y)<= e}, 

where d~, d7 ~ are the induced Riemannian metrics on W"(x),  WW'(x). A 

transversality argument gives: 

LEMMA (1.2) (Canonical Coordinates, [1], [13]). For sufficiently small rl > O, 

there exists y = y ( r / ) ,  0 < y < r / ,  such that if d(y,z)<=2y, then [y ,z ]=  

B ~ ' ( y ) n B ~ ( z )  is a single point; [.,.] is continuous on {(y,z) E 

M x M: d(y ,z)  <= 2y}. 

NOTATION. Let [A, B] = {[a, b]: a E A, b E B}. 

NOTE. The topology that B ~ (x) (B ~' (x)) inherits from W" (x) (W w" (x)) is 

the same as the topology it inherits from M. 

LEMMA (1.3). (a) Given e >0,  thereexists~ > 0  s u c h t h a t i f d ( x , y ) < &  then 

there is a homeomorphism h: B~,(y)×I--~M such that for each z E 

B~(y ) ,h ( z , . )  is a smooth curve in W~'(z) of length <=e and h(z, 1)= 
z,h(z,O)= [z,x]. 

(b) Given e' > 0 there exists 3' > 0 such that if d (x, y) < ~', then for all t >= 0 

and z E B~(y), d(f,z,f, [z,x])-< e'. 

PROOF. (a) By (I.1) (the continuity of {W"}), there is a homeomorphism 

g,: B~(x) x D T M  ~ M onto a neighborhood N(x)  of x such that g,(w,O)= w, 

each g,(w,.) is a smooth embedding into W*'(w) and the map B~(x) 
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C" (D TM, M) defined by w---~ g, (w, . )  is continuous. (We are assuming here 

that the r / cho sen  (in (1.2)) is suitably small, independent of x ; this can be done 

by compactness  of M.) 

Now if z ~ N ( x )  and d(z ,x )  < 2y, define p~ ~ D TM by g~( z )  = ([z,x],p~). It 

follows by (1.1) (the continuity of W ") that for  small 8 > 0, if d(x, y) < 8, then 

B,~ (y) C N ( x )  and the map 

h: B ~ , ( y ) x I  ~ M, h(z , t )=g~([z,x], tp~) 

will have the required properties.  Moreover ,  by compactness  of M, 8 can be 

chosen independent  of x. 

(b) By (a) we get that if d(x, y) < 8 and z E B-~(y), then [z,x] E B~'(z) .  By 

the contract iveness of D[, on E ~ (given in (l.0)), it follows that there is a 

cons tant /3  independent  of e such that for  all z E M and t _-> 0 

f ,B: ' ( z )  C BT$(f,z) C B,~(f,z), 

the ball of radius el3 in the metric d. This gives the lemma. 

DEFINITION (1.4). A W" flow is a continuous 1-parameter flow whose orbits 

are the unstable manifolds, W"(x) .  

A necessary and sufficient condition that the W"-family (i.e., the family of 

W"(x) ' s )  admits a W" flow is that E"  be orientable and 1-dimensional. So, we 

will need to assume this. Now, pick an orientation of E". This amounts  to a 

continuous vector  field V: M ~ TM, which spans E". V coherent ly and 

continuously orients each curve,  W"(x):  we can choose the immersion 

Jx : R ~ W" (x) such that (ix (0)). (V(x))  > 0. Define W~ (x) = J~ ([0, + Do)) and 

W_ ~ (x) - - J x ( ( -  ~,0]);  this simply gives a notion of "right and left".  If x ~ A C 

W"(x) ,  g: A -+ W"(gx)  is 1-1 and g(A n W : ( x ) )  c W:(gx) ,  then we say that 

g is orientation preserving. 

LEMMA (1.5). / 'fy E B ~ ' ( x ) ,  then P,.x: B~(y)  ~ B~(x),  defined by Py.x(z) = 

[z,x ], is orientation preserving. 

PROOF. Let  G = {y E B~'~(x): P~.x is orientation preserving}. By continuity 

of [.,.], G is open and closed in BTS(x). G is non-empty since Px.x is the 

identity. Since BTS(x) is connected (it's a disk), G must be all of B'~S(x). • 

LEMMA (1.6). For each t and x, f, is orientation preserving on WU(x). 
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PROOF. First note that f tW"(x).  = W"(ftx).  Now, D f t ( V ( x ) ) =  b ( x , t ) .  V (x )  

for  some continuous non-zero function b. Since b ( x , 0 ) =  1, b(x, t) is always 

positive, whence the lemma. • 

For  the remainder of the paper, we assume: 

(1.7) 
(a) 

(b) 
(c) 
(d) 

E" is orientable and l-dimensional. 

{ft} is c ~. 
{f,} preserves a smooth measure. 

Each W"(x )  is dense. 

REMARKS (1.8). We assume (b) and (c), because they are assumed in the 

reference we use to get a system of uniformly expanding measures (see (2.1)); 

however,  one can produce these measures by using symbolic dynamics, 

without these assumptions (this will essentially appear in [4]). Also, (d) is 

equivalent to each of two other assumptions: 

(d)' {ft} is not the constant time suspension of an Anosov 

diffeomorphism. 

(d)" {ft} has no continuous eigenfunctions (see [1,theors.  13, 14, 15]). 

Also, it is easy to see that (d)' is necessary for our result. 

2. Construction of a convenient parametrization 

A W" family may admit several different W" flows, but of course they all 

have the same orbits. Hence,  if one is uniquely ergodic, so is any other  ([10]). 

We will take advantage of this and construct  a convenient  W" flow {4~ } which 

satisfies two useful "commuta t ion  relations",  showing how it " c o mmu t e s "  with 

{ft } and [.,.l .  

NOTATION. ~bta,h)(X) = {&s(X): S E (a, b)}. 

PROPOSITION (2.1). The W u family admits a W ~ flow {ths} such that 

(CRI) for some constant 3, > l, ft o ~bs = ¢h~t~ oft for all s and t (i.e., the Anosov 

flow uniformly expands the orbits of  thet W ~ flow). 

(CRII) For all y in M, 4~-L,(Y) C B,~(y) and if d(x, y) _-< y, then there is a strictly 

increasing Lipschitz function kx.y: ( -  l, l) ~ R, defined by 4~.,ts~(x) = 

[~bs(y),x], such that for each x 

(a) limy_xkx.~(s) = s, uniformly in s. 

(b) lim~x (d/ds)k~.~(s) = l, uniformly in s. 
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NOTE. (d /ds)k , .~(s)  exists a.e. s E ( - 1 , 1 ) ,  since k~,~ is Lipschitz; at the 

points of ambiguity define (d /ds )k~ . , ( s )=  1. Also, (d/ds)k~.~(s) will be the 

Jacobian of 

Py,~: (B.~(y),p.y) ~ (B,~(x), t~),  z ~ [z, xl  

(/xx,/~y below). 

PROOF. In [12], assuming (1.7)b, c, (1.8)d", Margulis constructs a nice system 

of measures {/~x} (each/~x defined on W"(x)) ;  we will use these to construct  

{~,}. Specifically, the {/zx} satisfy: (they are defined on the Borel field of 

W"(x)). 
(0) If y ~ W" (x), then /xy =/Zx. 

(1) There  is a constant A > 1 such that for  all t ~ R ,  x E M  and A in 

W " ( x ) ,  ~¢,x(f,A) = A'p~, (A). 

(2) If U is a compact  neighborhood in W"(x) ,  therl 0 < /zx (U)  < + oo. 

(3) For  e > 0 ,  if x and y are sufficiently close and A CB.~(y), then 

I/z, (A) - ~ ([A, x ])1 < e • min (/~ (A),/~x ([A, x ])). 

(4) tzx is zero on points. 

(5) ~x ( W ~  (x))  = + ~.  

NOTE. (0), (I) and (2) are essentially stated in [12, p. 64 (bottom)]; (3) follows 

f rom (1.3a) and [12, Lemma 3.12, p. 65]. We now deduce (4) and (5) f rom (1), 

(2), and (3): 

PROOF OF (4). If not, then by (1) there exist points of arbitrarily large 

measure. So, by compactness  of M, there is a convergent  sequence x, ~ x 

such that/x~. ({x, }) ~ + ~. Since d(x,,  Ix., x ]) ---> 0, it follows f rom (3) that for  

sufficiently large n, /~x({[x,,x]}) > ½~. ({x, }). So, tx~(B~(x)) = + ~, contrary to 

(2). • 

PROOF OF (5). First note 

(6) inf /zx (B ,~ (x )) > 0 ;  
x ~ M  

for  if x and y are sufficiently close, then by (3) 

" > ~/zy (B~(y)). ~(B~,(x))>=tzx([B~(y) ,x])  ' , 

Now, use compactness  of M, to get (6). 
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For  each x, there is an x ' E  W"(x)  such that B~,(x')C W~(x);  this implies 

that W~(x)  contains infinitely many disjoint B~(x ' ) ' s .  This and (6) yield 

/ .~(W~(x)) = + ~ ;  similarly /.t~(W_~(x)) = + ~ .  

DEFINITION OF {Os}. For s ->_ 0, let 4,~(x) be the point in W~(x)  such that the 

/x~-measure of the arc f rom x to 4,~(x) in W"(x)  is s. Similarly for  s _-<0 

(replace W~ (x) by W" (x)). That  this is well-defined follows from (2), (4), and 

(5). By (2), the 4,- orbit of x is all of W" (x), and the group property 4,,+~ = 4,, o 4,, 

is immediate. Except  for  continuity (which will follow from CRII), this shows 

that {4,, } is a W" flow. 

CRI follows from (1) and (1.6). For CRII, first note that there exists c~ > 0 

such that for all y in M, 4,~ . . . .  ~(y) CB~ (y); this follows from (6) above,  for (6) is 

valid for r/ replaced by any smaller number, e.g., 3,/2. Then by a uniform 

dilation of the parametrization, we may assume that a = 1 ; this affects nothing 

we have done so far. Each k~., as defined in CRII, is strictly increasing by (1.5). 

By (3), given e > 0, if y is sufficiently close to x, then 

k~.~(t~- k_,.y(S)s - 1 < e 

for all s, t, - 1 _-< s < t =< 1. This shows that k~., is Lipschitz and gives us CRIIb. 

It will also yield CRIIa once we know that l im~k~.~(0)=  0. Now to see the 

latter, first note that for  fixed x the map s ~ 4,~(x) is 1-1 and continuous (by (2) 

and (4)); so for  some /3,/32, the map [/3,,/32]--' B~(x)  (s ~ 4,,(x)) is a 

homeomorphism onto BT,(x). Now since 4,k~.~o~(x)E B~(x) ,  and 

lira 4,~.,~o~(X) = l im[y ,x]  = [x,x]  = x, 
y ~ x  y ~ x  

we must have lim~xkx.y(0)= 0. So, this gives CRII. 

Now for continuity (of the map 4, : (x, s) --> ~b~ (x)). First note that by CRIIa, 

if x ~ M  and Itl < 1, kx~y(s) is continuous in (y , s )  at (x , t ) ;  for  

Ikx.~(s)- k,.x(t)[ = Ikx.,(s) - t] <= ]kx.y ( s ) -  s I + Is - tl. 

Also, 4,s(y) = [4,k,.,(,(x), y]. This fact  plus continuity of the three maps: k,.y(s) 
(in (y, s)), s ~ 4,s(x), (for x fixed), and [-, .] yields continuity of 4, at (x, t). So, 

4,IM,(-,.,) is continuous. Now use the group proper ty  to get continuity of 4, 

everywhere .  
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3. Proof of main result 

For n E Z +, choose t, such that A '~ = 2" (A as in (2.1)). For h E C(M),  define 

Rnh by 

R~h(x)=- h °6s of,~(x)ds = h °f,n ocks(x)ds 

(the last equality follows from CRI). 

PROPOSITION (3.1). {R,h} converges uniformly to a constant as n ~ +~.  

We will use (3.1) to show that "t ime averages" of continuous functions, h, 

computed over orbits of {~b~}, converge to a constant (independent of starting 

point), and this implies unique ergodicity. 

The proof of (3.1) requires a few lemmas. The basic idea is that {R~h} 

averages h over larger and larger (as n ~ + ~) subarcs of unstable manifolds; 

we will then get (3.1) from 

(III): the orbits of {~b,} are dense, and 

(IV): for each x E M, 

{f, 

is equicontinuous (uniformly in x) (see (1.3b)). 

In fact, our proof essentially shows that any flow {~bs}, which satisfies CRI, 

CRII, III, and IV, with respect to another flow {f,} and local sections (to 

{~bs }) Bx =-B ~ (x), is uniquely ergodic. 

LEMMA (3.2). For each h, {R,h },so is an equicontinuous family of uniformly 

bounded functions. 

PROOF. It follows from (1.3b) that, given x and e > 0, if y is sufficiently close 

to x, then 

lhof , (ch,(y))-hof , ([chs(y) ,x]) l<e for [ s ] < l  and t_->0. 

By CRII, we may also assume [kx .y (s ) - s l<e  for Isl<l and 

I (d /ds )kx . y ( s ) - l [<e  a.e. [s l< 1. We claim that for all n - 0  

(3.2.1) IR,h (x) - Rnh (y)l < e"  (1 + 3[Ih II). 

To see this, first note that, by choice of x, y, and e, 
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h o/,. ([qbs(y), x ]) ds I 

tfo' ! = (ho f , . o4~ , ( y ) -ho f , . ( [4 )~ (y ) , x l ) )d s  <e .  

By definition of kx.~ (as in CRII), 

(3.2.3) fo'hOf,.(t s(y),x])ds=fo' 
Now, since I (d /ds)k~.~(s) -  11 < e, 

(3.2.4) I fo'h - 

h of,. o ~bk~.,~s,(x ) ds. 

o ckkx ,~s ,( x ) ) ds  [ < e [rh rl . 

Since kx.~ is Lipschitz, hence absolutely continuous, we can use the change of 

variables formula: 

(3.2.5) 

And 

(3.2.6) 

• fZ'  

f"'"'h of,. o s(x)ds - R . h ( x )  < Ilhl]" ] k . ( l ) -  1 + kx.,,(0) I < 2el]hi]. 
J kx,y(0) 

Now, (3.2.2)-(3.2.6) yields (3.2.1), and hence (3.2). • 

LEMMA (3.3). Given e* > 0 there exists an integer s* > 0 such that for all 

y E M, {~bj(y): j --0, 1 , . - - , s*}  is e* dense. 

PROOF. This will follow immediately from the compactness of M, once we 

know that the map 4,, is minimal. But actually for each t ~ 0 ,  the map ~b, is 

minimal. If not, then there would be a proper minimal set for some ~b,, whence 

by the minimality of the flow {4),} (l.7d) there would be a continuous 

eigenfunction for the flow; i.e., a function f satisfying f(~s(x))  = 

[exp2rris/t]f(x), Ill = 1. Joe Plante pointed out that this would give rise to a 

non-trivial asymptotic cycle ([2, pp. 147-152]), contrary to [14, Theorem 2.4], 

modulo some smoothness technicalities. 

Alternatively, one could get the minimality of ~ from more general 

considerations: as several people have pointed out, if a continuous flow on a 
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separable metric space is minimal, then all but countably many of the time t 

maps are also minimal; otherwise, there would be uncountably many different 

eigenfunctions as above,  contradicting the separability of C(M). Now, we can 

assume that ~b, is minimal by reparametrizing the flow by an appropriate 

uniform dilation of the orbits. 

By a straightforward computation,  one gets 

LEMMA (3.4). For all m >-O, 

1 2m--1 

R.+,.h = ~-~ ,~=o R.h o6i of,.. 

PROOF OF (3.1). Set c, = minx~MR.h(x). By Lemma (3.4), {c,} is a non- 

decreasing sequence. Set c = limc.. Now let {nk}be a sequence with R,kh---~g 

uniformly. Note  that g is a continuous function with minimum c. By Lemma 

(3.4), 

1 2 m - l  

1=O 

¢ also has minimum c. Now if ¢(x0)= c, then g(4~J o[, .(x0))= c for  0_-<j _-< 

2" - 1. Thus by (3.3) given e*, g takes the value c on an e* dense set, since rn 

above is arbitrary. But then g ~ c. By (3.2) and the Arzela-Ascoli  theorem, 

R,h -~ c uniformly. 

Now we prove 

THEOREM (3.5). Every W" flow, whose corresponding Anosov flow satisfies 
(1.7), is uniquely ergodic. 

PROOF. As mentioned before,  it suffices to show that the specific parametri- 

zation {ths} is uniquely ergodic. Let  h E C(M) and e > 0. By (3.1), there exists n 

such that for all y @M, 1 R . h ( y ) - c l < e .  Now, for each j E Z  + and x ~ M ,  

l o 2"/)o h ~bs(x)ds i s a n a v e r a g e o f  {R,h(f-,.ock2., i-, 

Thus, for  all j E Z +, 

fo2"ho6,(x)ds-c] <e. 

" 2 "  ""  + Since l lti~z increases to + oo with bounded increments, this implies that, for  t 

sufficiently large, 
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-~ h o 4 ~ ( x ) d s - c  <2e .  

So, for all x E M, 

I f [  lira -~ h o d~s ( x ) ds = c. 

This is precisely the time average criterion for unique ergodicity ([9]). • 

Now, if N is a compact connected orientable 2-manifold of negative 

curvature, then its geodesic flow (on M = T~N, the unit tangent bundle) 

satisfies (1.7)a: 

First orient N. For (p, v ) E  T~N (i.e., p E N, v E (TN)p), orient W" ((p, v)) 

as follows: letting ~r: T~N--> N denote the projection map, 1rWU((p, v)) is a 

curve in N passing through p ; it is also orthogonal to the geodesic which passes 

through p in direction v (see [2]); now choose a unit vector w, tangent to 

~-W" (p, v) at p such that the ordered frame {v, w} agrees with the orientation 

of N at p. Now, lift w to a tangent vector to W" ((p, v)) at (p, v); this defines an 

orientation of E"  (i.e., a continuous vector field which spans E") .  

The geodesic flow also satisfies 1.7c ([3]) and 1.Sd" ([3, p. 101]). Recalling that 

a horocycle flow is a W" flow whose corresponding Anosov flow is the 

geodesic flow, we get from (3.5): 

MAIN RESULT (3.6). Every horocycle flow, whose corresponding geodesic 

flow is C 2, is uniquely ergodic. 

NOTE. If N is not orientable, then E"  will not be orientable. However,  we 

still get a result similar to (3.6): namely, any W" flow, corresponding to the 

generalized geodesic flow on the bundle of orthonormal 2-frames, is uniquely 

ergodic. (See [1, p. 10], [7].) 

Finally, we describe the invariant measure for the W ~ flow with our 

parametrization. Let  tt be the measure which maximizes entropy for the 

Anosov flow. Then locally M looks like B~,(x) x B~(x)*,and g = / ~  x/~7',  

where / ~  is the measure /~x on B~(x) that we used to construct our 

parametrization in Section 2, and g7  s is invariant under the Poincar6 return 

maps for the W" flow (see [12, Section 4] and [15,p. 42]). From this it easy to 

see that /~ is variant. 
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